Vejamos:
Traçamos três retas paralelas r, s e t, cortadas por retas transversais u e v.
Observe que os triângulos, são semelhantes pois, têm os ângulos correspondentes congruentes, logo as medidas dos lados correspondentes são proporcionais: (a construção dos triângulos, são usadas para provar a proporcionalidade dos segmentos formados pela interceptação das retas transversais pelas retas paralelas).
a/b = AG/BH
Observamos também que: AG = c, pois são as medidas dos lados opostos do paralelogramo AGED.
BH = d, pois são as medidas dos lados opostos do paralelogramo BHFE
Assim mostramos que há proporcionalidade entre eles:
a/b = c/d
A partir do teorema de Tales podemos escrever outras proporções:
x/a = y/c
x/b = y/d
a/c = b/d
Nenhum comentário:
Postar um comentário